INReady $8^{\text {th }}$ Grade Matihematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady $8^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

[^0]
INReady $8^{\text {th }}$ Grade Matihematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady 8 $^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

Cluster	Standards		\# of Items	\% of Test	Sadlier Progress Mathematics Grade 8		Sadlier Progress Monitor Benchmark Assessments: Mathematics**		
			\# of Items				\% of Test		
		- continued from previous page millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.							
8.EE.B* Understand the connections between proportional relationships, lines, and linear equations.			3-7	5-11\%			4	6\%	
	8.EE.B. 5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.			Lesson 10	Understand Proportional Relationships and Slope-pp. 88-95	2		
	8.EE.B.6	Use similar triangles to explain why the slope m is			Lesson 11	Understand Slope-pp. 96-103	2		
		the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b.			Lesson 12	Write Equations for Lines—pp. 104111			
8.EE.C* Analyze and solve linear equations and pairs of simultaneous linear equations.			3-8	5-15\%			13	19\%	
8.EE.C.7 Solve linear equations in one variable. a. Give examples of linear equations in one variable with one solution, infinitely many - continued on next page -							4		
					Lesson 13	Solve Linear Equations-pp. 112-119			

[^1]
INReady $8^{\text {th }}$ Grade Mathematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady $8^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

INReady $8^{\text {ti }}$ Grade Mathematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady 8 $^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

Cluster	Standards		\# of Items	\% of Test	Sadlier Progress Mathematics Grade 8		Sadlier Progress Monitor Benchmark Assessments: Mathematics**		
			\# of Items				\% of Test		
		c. Solve real-world and mathematical problems leading to two linear equations in two variables.				Lesson 15	Problem-Solving: Systems of Equations-pp. 128-135		
8.F.A* Define, evaluate, and compare functions.			3-7	5-11\%			8	11\%	
	8.F.A. 1	Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.)			Lesson 16	Understand Functions-pp. 142-149	3		
					Lesson 17	Represent Functions-pp. 150-157			
	8.F.A. 2	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).			Lesson 17	Represent Functions-pp. 150-157	3		
					Lesson 18	Compare Functions-pp. 158-165			
	8.F.A. 3	Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.			Lesson 19	Investigate Linear and Non-Linear Functions-pp. 166-173	2		
8.F.B* Use functions to model relationships between quantities.			3-8	5-13\%			6	9\%	
	8.F.B. 4	Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. - continued on next page -			Lesson 20	Use Functions to Model Relationships—pp. 174-181	3		
					Lesson 21	Problem Solving: Use Linear Modelspp. 182-189			

[^2]
INReady $8^{\text {th }}$ Grade Matihematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady 8 $^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

Cluster	Standards		\# of Items	\% of Test	Sadlier Progress Mathematics Grade 8		Sadlier Progress Monitor Benchmark Assessments: Mathematics**		
			\# of Items				\% of Test		
		- continued from previous page - Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.							
	8.F.B. 5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.			Lesson 22	Analyze Graphs of Functions-pp. 190-197	3		
8.G.A* Understand congruence and similarity using physical models, transparencies, or geometry software.			2-8	3-13\%			17	24\%	
	8.G.A. 1	Verify experimentally the properties of rotations, reflections, and translations:					5		
		a. Lines are taken to lines, and line segments to line segments of the same length.			Lesson 23	Verify Properties of Reflections and Translations—pp. 204-211			
					Lesson 24	Verify Properties of Rotations-pp. 212-219			
		b. Angles are taken to angles of the same measure.			Lesson 23	Verify Properties of Reflections and Translations—pp. 204-211			
					Lesson 24	Verify Properties of Rotations-pp. 212-219			

[^3]
INReady $8^{\text {th }}$ Grade Mathematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady $8^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

[^4]
INReady $8^{\text {ti }}$ Grade Mathematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady $8^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

[^5]
INReady $8^{\text {th }}$ Grade Matihematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady $8^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

Cluster	Standards		\# of Items	\% of Test	Sadlier Progress Mathematics Grade 8		Sadlier Progress Monitor Benchmark Assessments: Mathematics**		
			\# of Items				\% of Test		
		- continued from previous page decimal expansion which repeats eventually into a rational number.							
	8.NS.A. 2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., Π^{2}).			Lesson 2	Use Rational Approximations of Irrational Numbers—pp. 18-25	2		
8.G.C Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.			3-6	5-10\%			2	3%	
	8.G.C. 9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.			Lesson 36	Learn and Apply Volume Formulaspp. 308-315	2		
8.SP.A Investigate patterns of association in bivariate data.			4-9	7-15\%			10	14\%	
	8.SP.A. 1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.			Lesson 37	Construct and Interpret Scatter Plots-pp. 322-329	2		

[^6]
INReady $8^{\text {th }}$ Grade Mathematics Blueprint

Sadlier Progress Mathematics and Progress Monitor Benchmark Assessments
Correlated to the TNReady $8^{\text {th }}$ Grade Math Blueprint ${ }_{(\text {Revised } 10 / 1 / 15)}$

Cluster	Standards		\# of Items	\% ofTest	Sadlier Progress Mathematics Grade 8		Sadlier Progress Monitor Benchmark Assessments: Mathematics**		
			\# of Items				\% of Test		
	8.SP.A. 2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.				Lesson 38	Fit Linear Models to Data-pp. 330337	3	
	8.SP.A. 3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.			Lesson 39	Problem Solving: Use Linear Modelspp. 338-345	3		
	8.SP.A. 4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two- way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.			Lesson 40	Analyze Data in Two-Way Tablespp. 346-353	2		

[^7]
[^0]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.

[^1]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.
 Page 2 of 9

[^2]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.

[^3]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.

[^4]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.

[^5]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.

[^6]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.

[^7]:

 * Indicates Major Work of the Grade.
 ** Sadlier Progress Monitor Benchmark Assessments: Mathematics includes four Benchmarks with 70 items each; some items assess more than one standard.
 Page 9 of 9

