

Correlation to the Diocese of Cleveland Mathematics Curriculum

Learn more at www.SadlierSchool.com/SadlierMath

Sadlier School

OPERATIONS AND ALGEBRAIC THINKING

3.0A

	Grade 3 Content Standards	Sadlier Math, Grade 3	
Re	present and solve problems involving multipli	cation and division.	
1.	Interpret products of whole numbers, e.g., interpret 5 × 7 as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5 × 7.	Chapter 4: 4-1 through 4-3, 4-7 Chapter 5: 5-1 through 5-4 Chapter 6: 6-2 through 6-6 Chapter 8: 8-7 & 8-8	
2.	Interpret whole-number quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as 56 ÷ 8.	Chapter 4: 4-5 and 4-6 Chapter 7: 7-2 through 7-5 Chapter 8: 8-1 through 8-8	
3.	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	Chapter 4: 4-1 through 4-7 Chapter 5: 5-1 through 5-4 5-5, 5-7 & 5-8 Chapter 6: 6-1 through 6-9 Chapter 7: 7-6 7-1 through 7-6 Chapter 8: 8-1 through 8-5, 8-8	
4.	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ? = 48$, $5 = \Box \div 3$, $6 \times 6 = ?$	Chapter 5: 5-7 Chapter 6: 6-6 & 6-9 Chapter 7: 7-1	
Ur	Understand properties of multiplication and the relationship between multiplication and division.		
5.	Apply properties of operations as strategies to multiply and divide. ² Examples: If 6 × 4 = 24 is known, then 4 × 6 = 24 is also known. (Commutative property of multiplication.) continued	Chapter 4: 4-4 Chapter 5: 5-4 Chapter 6: 6-1 through 6-9	

²Students need not use formal terms for these properties.

use (not commercial use)

Sadlier School

0	OPERATIONS AND ALGEBRAIC THINKING		
	Grade 3 Content Standards	Sadlier Math, Grade 3	
	3 × 5 × 2 can be found by 3 × 5 = 15, then 15 × 2 = 30, or by 5 × 2 = 10, then 3 × 10 = 30. (Associative property of multiplication.) Knowing that 8 × 5 = 40 and 8 × 2 = 16, one can find 8 × 7 as 8 × (5 + 2) = (8 × 5) + (8 × 2) = 40 + 16 = 56. (Distributive property.)		
6.	Understand division as an unknown-factor problem. <i>For example, find 32 ÷ 8 by finding</i> <i>the number that makes 32 when multiplied</i> <i>by 8.</i>	Chapter 7: 7-1 through 7-6 Chapter 8: 8-1 through 8-8	
Multiply and divide within 100.			
7.	Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5 = 40$, one knows $40 \div 5 = 8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	Chapter 5: 5-1 through 5-7 Chapter 6: 6-1 through 6-11 Chapter 7: 7-1 through 7-5 Chapter 8: 8-1 through 8-9	
So	Solve problems involving the four operations, and identify and explain patterns in arithmetic		
8.	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. ³	Chapter 2: 2-8 Chapter 6: 6-8 Chapter 8: 8-6	
9.	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 continued	Chapter 2: 2-2 Chapter 5: 5-5 & 5-6 Chapter 6: 6-10	

³This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).

www.SadlierSchool.com/SadlierMath • 800-221-5175

OPERATIONS AND ALGEBRAIC THINKING

Sadlier Math, Grade 3

Grade 3 Content Standards

times a number can be decomposed into two equal addends.

NUMBER AND OPERATIONS IN BASE TEN

Grade 3 Content Standards

Use place value understanding and properties of operations to perform multi-digit arithmetic.

1.	Use place value understanding to round whole numbers to the nearest 10 or 100.	Chapter 1: 1-4 & 1-5
2.	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/ or the relationship between addition and subtraction.	Chapter 1: 1-6 Chapter 2: 2-1, 2-3 through 2-7 Chapter 3: 3-1 through 3-6
3.	Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., 9 × 80, 5 × 60) using strategies based on place value and properties of operations.	Chapter 6: 6-11

NUMBER AND OPERATIONS - FRACTIONS

Grade 3 Content Standards

Sadlier Math, Grade 3

Develop understanding of fractions as numbers.

 Understand a fraction 1/b as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a/b as the quantity formed by a parts of size 1/b. 	Chapter 9: 9-1, 9-2 & 9-4
---	---------------------------

3.OA Sadlier Math, Grade 3

Sadlier School

3.NF

3.NBT

NUMBER AND OPERATIONS - FRACTIONS

Grade 3 Content Standards

Sadlier Math, Grade 3

2.		Understand a fraction as a number on the number line; represent fractions on a number line diagram.	
	a.	Represent a fraction 1/b on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size 1/b and that the endpoint of the part based at 0 locates the number 1/b on the number line.	Chapter 9: 9-3
	b.	Represent a fraction <i>a/b</i> on a number line diagram by marking off a lengths 1/ <i>b</i> from O. Recognize that the resulting interval has size <i>a/b</i> and that its endpoint locates the number <i>a/b</i> on the number line.	Chapter 9: 9-5
3.	 Explain equivalence of fractions in special cases, and compare fractions by reasoning about thei size. 		s, and compare fractions by reasoning about their
	a.	Understand two fractions as equivalent (equal) if they are the same size, or the same point on a number line.	Chapter 10: 10-2 & 10-3
	b.	Recognize and generate simple equivalent fractions, e.g., 1/2 = 2/4, 4/6 = 2/3). Explain why the fractions are equivalent, e.g., by using a visual fraction model.	Chapter 10: 10-2 & 10-3
	C.	Express whole numbers as fractions, and recognize fractions that are equivalent to whole numbers. <i>Examples: Express 3</i> <i>in the form 3 = 3/1; recognize that 6/1 =</i> <i>6; locate 4/4 and 1 at the same point of a</i> <i>number line diagram.</i>	Chapter 9: 9-6 Chapter 10: 10-1
	d.	Compare two fractions with the same numerator or the same denominator by reasoning about their size. Recognize <i>continued</i>	Chapter 10: 10-4 through 10-6

3.NF

NUMBER AND OPERATIONS - FRACTIONS

1.

Grade 3 Content Standards Sadlier Math, Grade 3 that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. MEASUREMENT AND DATA **3.MD Grade 3 Content Standards** Sadlier Math, Grade 3 Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects. Tell and write time to the nearest minute Chapter 13: 13-1 through 13-4 and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. 2. Measure and estimate liquid volumes and Chapter 11: 11-2 through 11-5 masses of objects using standard units of grams (g), kilograms (kg), and liters (l).6 Add, subtract, multiply, or divide to solve one-step word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem.⁷ Represent and interpret data. 3. Draw a scaled picture graph and a scaled bar Chapter 12: 12-1 through 12-5 graph to represent a data set with several categories. Solve one- and two-step "how continued

⁶Excludes compound units such as cm³ and finding the geometric volume of a container.

⁷Excludes multiplicative comparison problems (problems involving notions of "times as much").

3.NF

Sadlier Math[™] Grade 3 Correlation to the Diocese of Cleveland Mathematics Curriculum

Sadlier School

M	MEASUREMENT AND DATA 3.MI		
	Grade 3 Content Standards	Sadlier Math, Grade 3	
	many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.		
4.	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters.	Chapter 12: 12-7 & 12-8	
1	Geometric measurement: understand concepts of area and relate area to multiplication and to addition.		
5.	Recognize area as an attribute of plane figures	and understand concepts of area measurement.	
	a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area.	Chapter 15: 15-1	
	b. A plane figure which can be covered without gaps or overlaps by <i>n</i> unit squares is said to have an area of <i>n</i> square units.	Chapter 15: 15-1	
6.	Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units).	Chapter 15: 15-1 through 15-3	
7.	Relate area to the operations of multiplication a	and addition.	
	a. Find the area of a rectangle with whole- number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths.	Chapter 15: 15-3	
	b. Multiply side lengths to find areas of rectangles with whole- number side <i>continued</i>	Chapter 15: 15-3	

Sadlier Math[™] Grade 3 Correlation to the Diocese of Cleveland Mathematics Curriculum

Sadlier School

MEASUREMENT AND DATA	3.MD	
Grade 3 Content Standards	Sadlier Math, Grade 3	
lengths in the context of solving real world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.		
 c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and b + c is the sum of a × b and a × c. Use area models to represent the distributive property in mathematical reasoning. 	Chapter 15: 15-4	
d. Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts, applying this technique to solve real world problems.	Chapter 15: 15-5	
Geometric measurement: recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.		
8. Solve real world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	Chapter 16: 16-1 through 16-6	

Sadlier School

GEOMETRY

	Grade 3 Content Standards	Sadlier Math, Grade 3	
Re	Reason with shapes and their attributes.		
1.	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	Chapter 14: 14-1 through 14-3	
2.	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as 1/4 of the area of the shape.	Chapter 9: 9-1 Chapter 15: 15-2	

3.G

