sadlier progress in mathematics Foundations of Algebra

SADLIER

Common Core Progress Mathematics

Common Core State Standards for Mathematics

Grade 8 Crosswalk

1.	Rational Numbers	2
2.	Real Numbers	3
3.	Expressions and Equations	6
4.	Inequalities	9
5.	Polynomials and Factoring	10
6.	Linear Functions and Inequalities	11
7.	Ratio and Proportion	16
8.	Percent Applicationss	19
9.	Two-Dimensional Geometry	19
10.	Geometric Measures and Coordinate Geometry	21
11.	Patterns and Nonlinear Functions	25
12.	Three-Dimensional Geometry	27
13.	Data Analysis and Statistics	28
14.	Probability and Logic	30
	Skills Update	31

Chapter 1 Rational Numbers

Zero and Negative p. 32–39	8.EE.1	Know and apply the properties of integer exponents to generate equivalent numerica
ties of Exponents—pp. 40–47		expressions. For example, $3^2 \times 3^{-5} = 3^{-3} = 1/3^3 = 1/27$.
es of Exponents Generate spressions—pp. 48–55		$101 \text{ example, } 5^- \times 5^- = 5^- = 1/5^- = 1/27.$
	p. 32–39 ties of Exponents—pp. 40–47 ts of Exponents Generate	p. 32–39 ties of Exponents—pp. 40–47 es of Exponents Generate

Chapter 1 Rational Numbers

FOUNDATIONS OF ALGEBRA, GRADE 8

1-15 Problem-Solving Strategy: Make a Drawing— TE pp. 30–31B; SB pp. 30–31 / PB pp. 29–30 COMMON CORE PROGRESS MATHEMATICS, GRADE 8

Lesson 13 Solve Linear Equations—pp. 112–119

- COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
- 8.EE.7b Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Chapter 2 Real Numbers

FOUND	FOUNDATIONS OF ALGEBRA, GRADE 8		COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
2-1	Scientific Notation —TE pp. 36–37B; SB pp. 36– 37 / PB pp. 39–40	Lesson 8	Estimate and Compare Large or Small Quantities—pp. 72–79	8.EE.3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.	
					For example, estimate the population of the United States as 3 times 10 ⁸ and the population of the world as 7 times 10 ⁹ , and determine that the world population is more than 20 times larger.	
2-2	Multiply and Divide in Scientific Notation —TE pp. 38–39B; SB pp. 38–39 / PB pp. 41–42	Lesson 8	Estimate and Compare Large or Small Quantities—pp. 72–79	8.EE.3	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other.	
					For example, estimate the population of the United States as 3 times 10 ⁸ and the population of the world as 7 times 10 ⁹ , and determine that the world population is more than 20 times larger.	
		Lesson 9	Calculate with Numbers in Scientific Notation—pp. 80–87	8.EE.4	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use	
					- continued on next page -	

Chapter 2 Real Numbers

FOUND	ATIONS OF ALGEBRA, GRADE 8	Соммон Со	Common Core Progress Mathematics, Grade 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
					– continued from previous page –	
					millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology	
2-3	Perfect Squares and Square Roots —TE pp. 40– 41B; SB pp. 40–41 / PB pp. 43–44	Lesson 6	Evaluate Square Roots and Cube Roots— pp. 56–63	8.EE.2	Use square root and cube root symbols to represent solutions to equations of the form x^2	
	Lesson 7	Solve Simple Equations Involving Squares and Cubes—pp. 64–71		= p and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.		
2-4	Estimate Square Roots —TE pp. 42–43B; SB pp. 42–43 / PB pp. 45–46	Lesson 2	Use Rational Approximations of Irrational Numbers—pp. 18–25	8.NS.2	squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational. Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2). For example, by truncating the decimal	
					For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	
2-5	Irrational Numbers —TE pp. 44–45B; SB pp. 44– 45 / PB pp. 47–48	Lesson 2	Use Rational Approximations of Irrational Numbers —pp. 18–25	8.NS.2	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π^2).	
					For example, by truncating the decimal expansion of $\sqrt{2}$, show that $\sqrt{2}$ is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.	
		Lesson 6	Evaluate Square Roots and Cube Roots— pp. 56–63	8.EE.2	Use square root and cube root symbols to represent solutions to equations of the form x^2	
		Lesson 7	Solve Simple Equations Involving Squares and Cubes—pp. 64–71		= p and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	

Chapter 2 Real Numbers

Foundat	IONS OF ALGEBRA, GRADE 8		RE PROGRESS MATHEMATICS, GRADE 8	Соммом	CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
2-6	Square Roots as Irrational Numbers —TE pp. 46–47B; SB 46–47 / PB pp. 49–50				
2-7	The Real Number System —TE pp. 48–49B; pp. SB 48–49 / PB pp. 51–52				
2-8	Properties of Real Numbers —TE pp. 50–51B; pp. SB 50–51 / PB pp. 53–54				
2-9	Pythagorean Theorem —TE pp. 52–53B; SB pp. 52–53 / PB pp. 55–56	Lesson 32	Understand the Pythagorean Theorem— pp. 276–283	8.G.6	Explain a proof of the Pythagorean Theorem and its converse.
		Lesson 33	Understand the Converse of the Pythagorean Theorem—pp. 284–291		
		Lesson 34	Problem Solving: The Pythagorean Theorem—pp. 292–299	8.G.7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real- world and mathematical problems in two and three dimensions.
* 2-9A	Proof of the Pythagorean Theorem—Online	Lesson 32	Understand the Pythagorean Theorem— pp. 276–283	8.G.6	Explain a proof of the Pythagorean Theorem and its converse.
		Lesson 33	Understand the Converse of the Pythagorean Theorem—pp. 284–291		
2-10	Special Right Triangles —TE pp. 54–55B; SB pp. 54–55 / PB pp. 57–58				
2-11	Technology: Evaluate Powers and Roots —TE pp. 56–57B; SB pp. 56–57 / PB pp. 59–60				
2-12	Problem-Solving Strategy: Organize Data —TE pp. 58–59B; SB 58–59 / PB pp. 61–62	Lesson 40	Analyze Data in Two-Way Tables—pp. 346–353	8.SP.4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.
					– continued on next page –

Chapter 2 Real Numbers

 FOUNDATIONS OF ALGEBRA, GRADE 8
 COMMON CORE PROGRESS MATHEMATICS, GRADE 8
 COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8

 - continued from previous page - continued from previous page For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew on school nights and whether or not they have a curfew of not have a curfew also tend to have chores?

Chapter 3 Expressions and Equations

FOUNDAT	TIONS OF ALGEBRA, GRADE 8	Common Core Progress Mathematics, Grade 8	Common Core State Standards for Mathematics, Grade 8
3-1	Mathematical Expressions—TE pp. 64–65B; SB pp. 64–65 / PB pp. 71–72		
3-2	Simplify and Evaluate Algebraic Expressions—TE pp. 66–67B; SB pp. 66–67 / PB pp. 73–74		
3-3	Equations —TE pp. 68–69B; SB pp. 68–69 / PB pp. 75–76	Lesson 13Solve Linear Equations—pp. 112–119	8.EE.7a Give examples of linear equations in one variable with one solution, infinitely many
3-4	Pne-Step Addition and Subtraction quations —TE pp. 70–71B; SB pp. 70–71 / PB pp. 7–78	solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form	
3-5	One-Step Multiplication and Division Equations —TE pp. 72–73B; SB pp. 72–73 / PB pp.		x = a, $a = a$, or $a = b$ results (where a and b are different numbers).
	79–80		8.EE.7b Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
*3-5A	Identify Equations with One, Many, or No Solutions—Online	Lesson 13 Solve Linear Equations—pp. 112–119	8.EE.7a Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler
			– continued on next page –

Chapter 3 Expressions and Equations

FOUNDAT	TIONS OF ALGEBRA, GRADE 8	Соммон Сон	RE PROGRESS MATHEMATICS, GRADE 8	COMMON	Core State Standards for Mathematics, Grade 8
					- continued from previous page – forms, until an equivalent equation of the form x = a, $a = a$, or $a = b$ results (where a and b are different numbers).
				8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
	Solve Equations with One, Many, or No Solutions—Online	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7a	Give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. Show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results (where a and b are different numbers).
3-6	Model Two-Step Equations —TE pp. 74–75B; SB pp. 74–75 / PB pp. 81–82	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose
3-7	Two-Step Equations —TE pp. 76–77B; SB pp. 76– 77 / PB pp. 83–84				solutions require expanding expressions using the distributive property and collecting like terms.
3-8	Multistep Equations with Grouping Symbols—TE pp. 78–79B; SB pp. 78–79 / PB pp. 85–86				
3-9	Multistep Equations with Variables on Both Sides—TE pp. 80–81B; SB pp. 80–81 / PB pp. 87– 88				
3-10	Multistep Equations: Fractions and Decimals—TE pp. 82–83B; SB pp. 82–83 / PB pp. 89–90				

Grade 8

Chapter 3 Expressions and Equations

Founda	tions of Algebra, Grade 8	COMMON COF	RE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
3-11	Equations: Repeating Decimals as Rational Numbers—TE pp. 84–85B; SB pp. 84–85 / PB pp. 91–92				
3-12	Absolute-Value Equations —TE pp. 86–87B; SB pp. 86–87 / PB pp. 93–94				
3-13	Literal Equations —TE pp. 88–89B; SB pp. 88–89 / PB pp. 95–96				
3-14	Problem-Solving Strategy: Guess and Test— TE pp. 90–91B; SB pp. 90–91 / PB pp. 97–98	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
		Lesson 14	Solve Systems of Equations—pp. 120–127	8.EE.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.
					For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
		Lesson 15	Problem-Solving: Systems of Equations— pp. 128–135	8.EE.8c	Solve real-world and mathematical problems leading to two linear equations in two variables.
					For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Chapter 4 Inequalities

	-		
Founda	tions of Algebra, Grade 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
4-1	Inequalities —TE pp. 96–97B; SB pp. 96–97 / PB pp. 107–108		
4-2	Inequalities: Solution Set —TE pp. 98–99B; SB pp. 98–99 / PB pp. 109–110		
4-3	One-Step Addition Inequalities —TE pp. 100– 101B; SB pp. 100–101 / PB pp. 111–112		
4-4	One-Step Subtraction Inequalities —TE pp. 102–103B; SB pp. 102–103 / PB pp. 113–114		
4-5	One-Step Multiplication Inequalities —TE pp. 104–105B; SB pp. 104–105 / PB pp. 115–116		
4-6	One-Step Division Inequalities —TE pp. 106– 107B; SB pp. 106–107 / PB pp. 117–118		
4-7	Two-Step Inequalities —TE pp. 108–109B; SB pp. 108–109 / PB pp. 119–120		
4-8	Multistep Inequalities with Grouping Symbols—TE pp. 110–111B; SB pp. 110–111 / PB pp. 121–122		
4-9	Multistep Inequalities with Variables on Both Sides—TE pp. 112–113B; SB pp. 112–113 / PB pp. 123–124		
4-10	Multistep Inequalities: Fractions and Decimals—TE pp. 114–115B; SB pp. 114–115 / PB pp. 125–126		
4-11	Compound Inequalities —TE pp. 116–117B; SB pp. 116–117 / PB pp. 127–128		
4-12	Problem Solving: Review of Strategies —TE pp. 118–119B; SB pp. 118–119 / PB pp. 129–130		

Chapter 5 Polynomials and Factoring

Founda	TIONS OF ALGEBRA, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8
5-1	Polynomials —TE pp. 124–125B; SB pp. 124–125 / PB pp. 139–140	
5-2	Degree of a Polynomial —TE pp. 126–127B; SB pp. 126–127 / PB pp. 141–142	
5-3	Modeling Polynomials —TE pp. 128–129B; SB pp. 128–129 / PB pp. 143–144	
5-4	Add Polynomials —TE pp. 130–131B; SB pp. 130–131 / PB pp. 145–146	
5-5	Subtract Polynomials —TE pp. 132–133B; SB pp. 132–133 / PB pp. 147–148	
5-6	Multiply by Monomials —TE pp. 134–135B; SB pp. 134–135 / PB pp. 149–150	
5-7	Multiply Binomials —TE pp. 136–137B; SB pp. 136–137 / PB pp. 151–152	
5-8	More Binomials Special Cases —TE pp. 138– 139B; SB pp. 138–139 / PB pp. 153–154	
5-9	Divide by Monomials —TE pp. 140–141B; SB pp. 140–141 / PB pp. 155–156	
5-10	Factoring Using the GCF —TE pp. 142–143B; SB pp. 142–143 / PB pp. 157–158	
5-11	Factoring Trinomials: x² + bx + c —TE pp. 144– 145B; SB pp. 144–145 / PB pp. 159–160	
5-12	Factoring Special Products —TE pp. 146–147B; SB pp. 146–147 / PB pp. 161–162	
5-13	Factoring Trinomials: ax² + bx + c —TE pp. 148–149B; SB pp. 148–149 / PB pp. 163–164	
5-14	Problem-Solving Strategy: Find a Pattern —TE pp. 150–151B; SB pp. 150–151 / PB pp. 165–166	

Found	ATIONS OF ALGEBRA, GRADE 8		RE PROGRESS MATHEMATICS, GRADE 8	Соммон	Core State Standards for Mathematics, Grade 8
6-1	Relations and Functions —TE pp. 156–157B; SB pp. 156–157 / PB pp. 175–176	Lesson 14	Solve Systems of Equations—pp. 120–127	linear equations in two va to points of intersection of because points of intersec	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
		Lesson 16	Understand Functions—pp. 142–149	8.F.1	Understand that a function is a rule that
	Lesson 17 Represent Functions—pp. 150–157		assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.		
		Lesson 20	Use Functions to Model Relationships— pp. 174–181	8.F.4	Construct a function to model a linear relationship between two quantities.
		Lesson 21	Problem Solving: Use Linear Models—pp. 182–189		Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
6-2	Graphs of Functions —TE pp. 158–159B; SB pp. 158–159 / PB pp. 177–178	Lesson 14	Solve Systems of Equations—pp. 120–127	8.EE.8a	Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
		Lesson 16	Understand Functions—pp. 142–149	8.F.1	Understand that a function is a rule that
		Lesson 17	Represent Functions—pp. 150–157		assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output.
		Lesson 17	Represent Functions—pp. 150–157	8.F.2	Compare properties of two functions each
		Lesson 18	Compare Functions—pp. 158–165		represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).
					– continued on next page –

Foundations of Algebra, Grade 8	COMMON COR	RE PROGRESS MATHEMATICS, GRADE 8	Соммон	DMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
				– continued from previous page –	
				For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	
	Lesson 20Use Functions to Model Relationships8.F.4pp. 174–181	Construct a function to model a linear relationship between two quantities.			
	Lesson 21	Problem Solving: Use Linear Models—pp. 182–189		Determine the rate of change and initial value of the function from a description of a relationship or from two (x , y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.	
*6-2A Compare Functions—Online	Lesson 17	Represent Functions—pp. 150–157	8.F.2	Compare properties of two functions each	
	Lesson 18	8 Compare Functions—pp. 158–165		represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions).	
				For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.	
	Lesson 37	Construct and Interpret Scatter Plots—pp. 322–329	8.SP.1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.	

FOUNDAT	IONS OF ALGEBRA, GRADE 8	COMMON COF	RE PROGRESS MATHEMATICS, GRADE 8	Соммон	Core State Standards for Mathematics, Grade 8
6-3	Scatter Plots —TE pp. 160–161B; SB pp. 160–161 / PB pp. 179–180	Lesson 37	Construct and Interpret Scatter Plots—pp. 322–329	8.SP.1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
		Lesson 38	Fit Linear Models to Data—pp. 330–337	8.SP.2	Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line.
*6-3A	Analyze Outliers—Online	Lesson 37		8.SP.1	Construct and interpret scatter plots for bivariate measurement data to investigate
*6-3B	Clustering —Online	322–329	322-329		patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
6-4	Slope of a Line —TE pp. 162–163B; SB pp. 162– 163 / PB pp. 181–182	Lesson 22	Analyze Graphs of Functions—pp. 190– 197	8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
6-5	The x- and y-Intercepts of a Line —TE pp. 164– 165B; SB pp. 164–165 / PB pp. 183–184				
6-6	Linear Functions: Standard Form and Slope-	Lesson 11	Understand Slope—pp. 96–103	8.EE.6	Use similar triangles to explain why the slope
	Intercept Form —TE pp. 166–167B; SB pp. 166– 167 / PB pp. 185–186	Lesson 12	Write Equations for Lines—pp. 104–111		m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.
		Lesson 19	Investigate Linear and Non-Linear Functions—pp. 166–173	8.F.3	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
					– continued on next page –

Foundat	TIONS OF ALGEBRA, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
					– continued from previous page –
					For example, the function $A = s^2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
6-7	Linear Functions: Point-Slope Form —TE pp. 168–169B; SB pp. 168–169 / PB pp. 187–188	Lesson 22	Analyze Graphs of Functions—pp. 190– 197	8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
*6-7A	Analyzing Trend Lines—Online	Lesson 37	Construct and Interpret Scatter Plots—pp. 322–329	8.SP.1	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.
		Lesson 39	Problem Solving: Use Linear Models—pp. 338–345	8.SP.3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.
					For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
*6-7B	Use Linear Models to Solve Problems—Online	Lesson 39	Problem Solving: Use Linear Models—pp. 338–345	8.SP.3	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept.
					For example, in a linear model for a biology experiment, interpret a slope of 1.5 cm/hr as
					– continued on next page –

Founda	TIONS OF ALGEBRA, GRADE 8		RE PROGRESS MATHEMATICS, GRADE 8	Соммон	Core State Standards for Mathematics, Grade 8
					– continued from previous page –
		_			meaning that an additional hour of sunlight each day is associated with an additional 1.5 cm in mature plant height.
6-8	Parallel Lines and Perpendicular Lines—TE pp. 170–171B; SB pp. 170–171 / PB pp. 189–190				
6-9	Direct Variation —TE pp. 172–173B; SB pp. 172– 173 / PB pp. 191–192	Lesson 10	Understand Proportional Relationships and Slope—pp. 88–95	8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.
					For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
		Lesson 11	Understand Slope—pp. 96–103	8.EE.6	Use similar triangles to explain why the slope
		Lesson 12	Write Equations for Lines—pp. 104–111		m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.
6-10	Solve Systems of Equations by Graphing —TE pp. 174–175B; SB pp. 174–175 / PB pp. 193–194	Lesson 14	Lesson 14 Solve Systems of Equations—pp. 120–127	8.EE.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions
6-11	Solve Systems of Equations by Substitution				by graphing the equations. Solve simple cases by inspection.
	and Elimination —TE pp. 176–177B; SB pp. 176– 177 / PB pp. 195–196				For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
		Lesson 15	Problem-Solving: Systems of Equations— pp. 128–135	8.EE.8c	Solve real-world and mathematical problems leading to two linear equations in two variables.
					For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.

Foundati	IONS OF ALGEBRA, GRADE 8		RE PROGRESS MATHEMATICS, GRADE 8		Core State Standards for Mathematics, Grade 8
*6-11A	Use Systems to Solve Problems—Online	Lesson 15	Problem-Solving: Systems of Equations— pp. 128–135	8.EE.8.c	Solve real-world and mathematical problems leading to two linear equations in two variables.
					For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
6-12	Linear Inequalities in Two Variables—TE pp. 178–179B; SB pp. 178–179 / PB pp. 197–198				
6-13	Systems of Linear Inequalities —TE pp. 180– 181B; SB pp. 180–181 / PB pp. 199–200				
6-14	Problem-Solving Strategy: Reason Logically— TE pp. 182–183B; SB pp. 182–183 / PB pp. 201– 202	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
		Lesson 14	Solve Systems of Equations—pp. 120–127	8.EE.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.
					For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.

Chapter 7 Ratio and Proportion

Foundations of Algebra, Grade 8		COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
7-1	Ratios, Rates, and Unit Rates —TE pp. 188– 189B; SB pp. 188–189 / PB pp. 211–212	Lesson 10	Understand Proportional Relationships and Slope—pp. 88–95	8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.
					For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.

Chapter 7 Ratio and Proportion

Foundat	TIONS OF ALGEBRA, GRADE 8	COMMON COF	RE PROGRESS MATHEMATICS, GRADE 8	COMMON	Core State Standards for Mathematics, Grade 8											
7-2	Proportions —TE pp. 190–191B; SB pp. 190–191 / PB pp. 213–214	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.											
7-3	Conversion Factors and Measurement Systems—TE pp. 192–193B; SB pp. 192–193 / PB pp. 215–216	Lesson 10	Understand Proportional Relationships and Slope —pp. 88–95	8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.											
					For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.											
7-4	Dimensional Analysis —TE pp. 194–195B; SB pp. 194–195 / PB pp. 217–218															
7-5	Direct Proportions —TE pp. 196–197B; SB pp. 196–197 / PB pp. 219–220	Lesson 10	Understand Proportional Relationships and Slope—pp. 88–95	8.EE.5	Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways.											
*7-5A	Proportions and Unit Rates—Online															
* 7-5B	Graph Proportional Relationships—Online															
* 7-5C	Compare Proportional Relationships—Online				distance-time equation to determine which of two moving objects has greater speed.											
7-6	Partitive Proportions —TE pp. 198–199B; SB pp. 198–199 / PB pp. 221–222			· · · · · · · · · · · · · · · · · · ·												
7-7	Inverse Proportions —TE pp. 200–201B; SB pp. 200–201 / PB pp. 223–224															
7-8	Scale Drawings and Scale Models —TE pp. 202– 203B; SB pp. 202–203 / PB pp. 225–226															
7-9	Similarity —TE pp. 204–205B; SB pp. 204–205 / PB pp. 227–228	Lesson 31	Establish Facts about Triangles and Angles—pp. 266–275	8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of											
		Lesson 30	Establish Facts about Parallel Lines and Angles—pp. 260–265		triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangle											
					– continued on next page –											

Chapter 7 Ratio and Proportion

Founda	FOUNDATIONS OF ALGEBRA, GRADE 8		RE PROGRESS MATHEMATICS, GRADE 8	Соммон	Core State Standards for Mathematics, Grade 8
					– continued from previous page –
					For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
7-10	Trigonometric Ratios —TE pp. 206–207B; SB pp. 206–207 / PB pp. 229–230				
7-11	Indirect Measurement —TE pp. 208–209B; SB pp. 208–209 / PB pp. 231–232				
7-12	Problem-Solving Strategy: Solve a Simpler Problem—TE pp. 210–211B; SB pp. 210–211 / PB pp. 233–234	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
		Lesson 30	Establish Facts about Parallel Lines and Angles—pp. 260–265	8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of
		Lesson 31	Establish Facts about Triangles and Angles—pp. 266–275		triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.
					For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.

Chapter 8 Percent Applications

FOUND	ATIONS OF ALGEBRA, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
8-1	Fractions, Decimals, and Percents —TE pp. 216–217B; SB pp. 216–217 / PB pp. 243–244		
8-2	Estimate Percents —TE pp. 218–219B; SB pp. 218–219 / PB pp. 245–246		
8-3	Percentage and Applications —TE pp. 220– 221B; SB pp. 220–221 / PB pp. 247–248		
8-4	Rate and Applications —TE pp. 222–223B; SB pp. 222–223 / PB pp. 249–250		
8-5	Base and Applications —TE pp. 224–225B; SB pp. 224–225 / PB pp. 251–252		
8-6	Percent of Change —TE pp. 226–227B; SB pp. 226–227 / PB pp. 253–254		
3-7	Simple and Compound Interest —TE pp. 228– 229B; SB pp. 228–229 / PB pp. 255–256		
8-8	Problem Solving: Review of Strategies —TE pp. 230–231B; SB pp. 230–231 / PB pp. 257–258		

Chapter 9 Two-Dimensional Geometry

PROGRE	PROGRESS IN MATHEMATICS, GRADE 8		COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
9-1	PB pp. 267–268	Lesson 30	Angles —pp. 260–265	8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of	
9-2		Lesson 31			triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.	
					For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.	

9-3 Classifying Polygons—TE pp. 240–241B; SB pp. 240–241 / PB pp. 271–272

Chapter 9 Two-Dimensional Geometry

PROGRESS IN MATHEMATICS, GRADE 8		COMMON COR	e Progress Mathematics, Grade 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
9-4	Angles of Polygons —TE pp. 242–243B; SB pp. 242–243 / PB pp. 273–274	Lesson 30	Establish Facts about Parallel Lines and Angles—pp. 260–265	8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when
*9-4 A	Angle-Angle Criterion for Similar Triangles— Online	Lesson 31	Establish Facts about Triangles and Angles—pp. 266–275		parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles
					For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
9-5	Congruent Polygons —TE pp. 244–245B; SB pp. 244–245 / PB pp. 275–276	Lesson 25	Understand and Identify Congruent Figures—pp. 220–227	8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.
9-6	Circles —TE pp. 246–247B; SB pp. 246–247 / PB pp. 277–278				
9-7	Make Circle Graphs —TE pp. 248–249B; SB pp. 248–249 / PB pp. 279–280				
9-8	Angle Constructions —TE pp. 250–251B; SB pp. 250–251 / PB pp. 281–282				
9-9	Line Constructions —TE pp. 252–253B; SB pp. 252–253 / PB pp. 283–284				
9-10	Triangle Constructions —TE pp. 254–255B; SB pp. 254–255 / PB pp. 285–286				
9-11	Angles of Elevation and Depression —TE pp. 256–257B; SB pp. 256–257 / PB pp. 287–288				
9-12	Tessellations —TE pp. 258–259B; SB pp. 258–259 / PB pp. 289–290				
9-13	Problem-Solving Strategy: Adopt a Different Point of View—TE pp. 260–261B; SB pp. 260– 261 / PB pp. 291–292	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7.b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.

Copyright © William H. Sadlier, Inc. All rights reserved.

Chapter 9 Two-Dimensional Geometry

PROGRESS IN MATHEMATICS, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8 COMMON CORE STATE STANDARDS FOR MATHEMATICS		Core State Standards for Mathematics, Grade 8	
	Lesson 14	Solve Systems of Equations—pp. 120–127	8.EE.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.
				For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
	Lesson 26Reflect and Translate Figures on the Coordinate Plane—pp. 228–2358	8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional	
	Lesson 27	Rotate Figures on the Coordinate Plane— pp. 236–243		figures using coordinates.
	Lesson 28	Dilate Figures on the Coordinate Plane— pp. 244–251		

Chapter 10 Geometric Measures and Coordinate Geometry

Founda	tions of Algebra, Grade 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
10-1	Precision and Significant Digits —TE pp. 266– 267B; SB pp. 266–267 / PB pp. 301–302		
10-2	Perimeter and Missing Dimensions —TE pp. 268–269B; SB pp. 268–269 / PB pp. 303–304		
10-3	Area of Polygons —TE pp. 270–271B; SB pp. 270–271 / PB pp. 305–306		
10-4	Circumference and Area of Circles —TE pp. 272–273B; SB pp. 272–273 / PB pp. 307–308		
10-5	Area of Complex Figures —TE pp. 274–275B; SB pp. 274–275 / PB pp. 309–310		
10-6	Area and Missing Dimensions —TE pp. 276– 277B; SB pp. 276–277 / PB pp. 311–312		

Chapter 10 Geometric Measures and Coordinate Geometry

FOUNDAT	FOUNDATIONS OF ALGEBRA, GRADE 8		Common Core Progress Mathematics, Grade 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
10-7	Coordinate Plane and Polygons—TE pp. 278–	Lesson 11	Understand Slope—pp. 96-103	8.EE.6	Use similar triangles to explain why the slope	
	279B; SB pp. 278–279 / PB pp. 313–314	Lesson 12	Write Equations for Lines—pp. 104–111		m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.	
		Lesson 26	Reflect and Translate Figures on the Coordinate Plane—pp. 228–235	8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional	
		Lesson 27	Rotate Figures on the Coordinate Plane— pp. 236–243		figures using coordinates.	
		Lesson 28	Dilate Figures on the Coordinate Plane — pp. 244–251			
		Lesson 35	Calculate Distances in the Coordinate Plane—pp. 300–307	8.G.8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	
*10-7A	Apply Pythagorean Theorem—Online	Lesson 35	Calculate Distances in the Coordinate Plane—pp. 300–307	8.G.8	Apply the Pythagorean Theorem to find the distance between two points in a coordinate system.	
10-8	Coordinate Plane: Reflections and Translations—TE pp. 280–281B; SB pp. 280–281 / PB pp. 315–316	Lesson 25	Understand and Identify Congruent Figures—pp. 220–227	8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	
		Lesson 26	Reflect and Translate Figures on the Coordinate Plane—pp. 228–235	8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional	
		Lesson 27	Rotate Figures on the Coordinate Plane— pp. 236–243		figures using coordinates.	
		Lesson 28	Dilate Figures on the Coordinate Plane— pp. 244–251			

Chapter 10 Geometric Measures and Coordinate Geometry

Foundat	IONS OF ALGEBRA, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8		
10-9	Coordinate Plane: Rotations —TE pp. 282– 283B; SB pp. 282–283 / PB pp. 317–318	Lesson 25	Understand and Identify Congruent Figures—pp. 220–227	8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	
		Lesson 26	Reflect and Translate Figures on the Coordinate Plane—pp. 228–235	8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional	
	Lesson 27 Rotate Figures on the Coordinate Plane— pp. 236–243		figures using coordinates.			
		Lesson 28	Dilate Figures on the Coordinate Plane — pp. 244–251			
*10-9 A	Properties of Rigid Transformations—Online	Lesson 23	Verify Properties of Reflections and Translations—pp. 204–211	8.G.1a	Lines are taken to lines, and line segments to line segments of the same length.	
		Lesson 24	Verify Properties of Rotations—pp. 212– 219	8.G.1b	Angles are taken to angles of the same measure.	
				8.G.1c	Parallel lines are taken to parallel lines.	
10-10	Coordinate Plane: Dilations —TE pp. 284–285B; SB pp. 284–285 / PB pp. 319–320	Lesson 26	Reflect and Translate Figures on the Coordinate Plane—pp. 228–235	8.G.3	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional	
		Lesson 27	Rotate Figures on the Coordinate Plane— pp. 236–243		figures using coordinates.	
		Lesson 28	Dilate Figures on the Coordinate Plane — pp. 244–251			
		Lesson 29	Identify Similar Figures—pp. 252–259	8.G.4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	

Chapter 10 Geometric Measures and Coordinate Geometry

FOUNDAT	Foundations of Algebra, Grade 8		COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
10-11	Combine Transformations —TE pp. 286– 287B; SB pp. 286–287 / PB pp. 321–322	Lesson 25	Understand and Identify Congruent Figures—pp. 220–227	8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	
		Lesson 29	Identify Similar Figures—pp. 252–259	8.G.4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	
*10-11	A Transformations and Congruence—Online	Lesson 25	Understand and Identify Congruent Figures—pp. 220–227	8.G.2	Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.	
*10-11	B Transformations and Similarity—Online	Lesson 29	Identify Similar Figures—pp. 252–259	8.G.4	Understand that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations; given two similar two-dimensional figures, describe a sequence that exhibits the similarity between them.	
10-12	Problem-Solving Strategy: Work Backward— TE pp. 288–289B; SB pp. 288–289 / PB pp. 323– 324	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.	

Grade 8

Chapter 11 Patterns and Nonlinear Functions

Foundati	ONS OF ALGEBRA, GRADE 8	COMMON COF	RE PROGRESS MATHEMATICS, GRADE 8	Соммон	CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
11-1	Extend and Create Patterns —TE pp. 294–295B; SB pp. 294–295 / PB pp. 333–334				
11-2	Arithmetic Patterns and Tables —TE pp. 296– 297B; SB pp. 296–297 / PB pp. 335–336				
11-3	Geometric Patterns and Tables—TE pp. 298– 299B; SB pp. 298–299 / PB pp. 337–338				
11-4	Relationships and Graphs —TE pp. 300–301B; SB pp. 300–301 / PB pp. 339–340				
*11-4A	Sketch Graphs—Online	Lesson 22	Analyze Graphs of Functions—pp. 190–	8.F.5	Describe qualitatively the functional
11-5	Find Function Values —TE pp. 302–303B; SB pp. 302–303 / PB pp. 341–342		197		relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.
11-6	Nonlinear Functions: Quadratic —TE pp. 304– 305B; SB pp. 304–305 / PB pp. 343–344	Lesson 19	Investigate Linear and Non-Linear Functions—pp. 166–173	8.F.3	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
11-7	Other Nonlinear Functions —TE pp. 306–307B; SB pp. 306–307 / PB pp. 345–346				For example, the function $A = s2$ giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.
11-8	Inverse Variation—TE pp. 308–309B; SB pp. 308–309 / PB pp. 347–348				
11-9	Technology: Graphs of Nonlinear Functions — TE pp. 310–311B; SB pp. 310–311 / PB pp. 349– 350	Lesson 19	Investigate Linear and Non-Linear Functions—pp. 166–173	8.F.3	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear.
					For example, the function A = s ² giving the area of a square as a function of its side length is not linear because its graph contains the points (1,1), (2,4) and (3,9), which are not on a straight line.

Chapter 11 Patterns and Nonlinear Functions

Foundations of Algebra, Grade 8		COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
11-10	Problem-Solving Strategy: Account for All Possibilities—TE pp. 312–313B; SB pp. 312–313 / PB pp. 351–352	Lesson 14	Solve Systems of Equations—pp. 120–127	8.EE.8b	Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.
					For example, 3x + 2y = 5 and 3x + 2y = 6 have no solution because 3x + 2y cannot simultaneously be 5 and 6.
		Lesson 15	Problem-Solving: Systems of Equations— pp. 128–135	8.EE.8c	Solve real-world and mathematical problems leading to two linear equations in two variables.
					For example, given coordinates for two pairs of points, determine whether the line through the first pair of points intersects the line through the second pair.
		Lesson 40	Analyze Data in Two-Way Tables—pp. 346–353	8.SP.4	Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables.
					For example, collect data from students in your class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

Grade 8

Chapter 12 Three-Dimensional Geometry

Foundati	ONS OF ALGEBRA, GRADE 8	COMMON COF	RE PROGRESS MATHEMATICS, GRADE 8	Соммон	Core State Standards for Mathematics, Grade 8
12-1	Polyhedrons and Other Three-Dimensional Figures—TE pp. 318–319B; SB pp. 318–319 / PB pp. 361–362				
12-2	Draw Views of Three-Dimensional Figures—TE pp. 320–321B; SB pp. 320–321 / PB pp. 363–364				
12-3	Surface Area of Prisms and Cylinders—TE pp. 322–323B; SB pp. 322–323 / PB pp. 365–366				
12-4	Surface Area of Pyramids and Cones —TE pp. 324–325B; SB pp. 324–325 / PB pp. 367–368				
12-5	Volume of Prisms and Cylinders —TE pp. 326– 327B; SB pp. 326–327 / PB pp. 369–370	Lesson 36	Learn and Apply Volume Formulas—pp. 308–315	8.G.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
*12-5A	Perfect Cubes and Cube Roots—Online	Lesson 6	Evaluate Square Roots and Cube Roots — pp. 56–63	8.EE.2	Use square root and cube root symbols to represent solutions to equations of the form
*12-5B	Use Cube Root Symbols—Online	Lesson 7	Solve Simple Equations Involving Squares and Cubes—pp. 64–71		$x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.
12-6	Volume of Pyramids and Cones —TE pp. 328– 329B; SB pp. 328–329 / PB pp. 371–372	Lesson 36	Learn and Apply Volume Formulas—pp. 308–315	8.G.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.
*12-6A	Compute Missing Dimensions of Three- Dimensional Figures—Online	Lesson 34	Problem Solving: The Pythagorean Theorem—pp. 292–299	8.G.7	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions.
12-7	Volume of Spheres —TE pp. 330–331B; SB pp. 330–331 / PB pp. 373–374	Lesson 36	Learn and Apply Volume Formulas —pp. 308–315	8.G.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Grade 8

Chapter 12 Three-Dimensional Geometry

FOUNDAT	IONS OF ALGEBRA, GRADE 8		RE PROGRESS MATHEMATICS, GRADE 8	Соммон	Core State Standards for Mathematics, Grade 8
12-8	Similar Three-Dimensional Figures —TE pp. 332–333B; SB pp. 332–333 / PB pp. 375–376				
12-9	Effect of Changing Dimensions —TE pp. 334– 335B; SB pp. 334–335 / PB pp. 377–378				
12-10	Explore Properties of Three-Dimensional Figures—TE pp. 336–337B; SB pp. 336–337 / PB pp. 379–380				
12-11	Problem-Solving Strategy: Review of Strategies—TE pp. 338–339B; SB pp. 338–339 / PB pp. 381–382	Lesson 13	Solve Linear Equations—pp. 112–119	8.EE.7b	Solve linear equations with rational number coefficients, including equations whose solutions require expanding expressions using the distributive property and collecting like terms.
		Lesson 22	Analyze Graphs of Functions—pp. 190– 197	8.F.5	Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Chapter 13 Data Analysis and Statistics

Founda	tions of Algebra, Grade 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
13-1	Collect and Organize Data —TE pp. 344–345B; SB pp. 344–345 / PB pp. 391–392		
13-2	Surveys and Samples —TE pp. 346–347B; SB pp. 346–347 / PB pp. 393–394		
13-3	Stem-and-Leaf Plots —TE pp. 348–349B; SB pp. 348–349 / PB pp. 395–396		
13-4	Box-and-Whisker Plots —TE pp. 350–351B; SB pp. 350–351 / PB pp. 397–398		
13-5	Multiple Bar Graphs —TE pp. 352–353B; SB pp. 352–353 / PB pp. 399–400		

Chapter 13 Data Analysis and Statistics

*13-5A Patterns of Association in Categorical Data— Online

*13-5B Examine Patterns of Association—Online

COMMON CORE PROGRESS MATHEMATICS, GRADE 8

Lesson 40 Analyze Data in Two-Way Tables—pp. 346–353

COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8

8.SP.4

Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. Construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. *For example, collect data from students in your*

class on whether or not they have a curfew on school nights and whether or not they have assigned chores at home. Is there evidence that those who have a curfew also tend to have chores?

- 13-6 Bar Graph Applications—TE pp. 354–355B; SB pp. 354–355 / PB pp. 401–402
 13-7 Histograms—TE pp. 356–357B; SB pp. 356–357 / PB pp. 403–404
- **13-8 Multiple Line Graphs**—TE pp. 358–359B; SB pp. 358–359 / PB pp. 405–406
- **13-9 Choose Appropriate Graphs**—TE pp. 360–361B; SB pp. 360–361 / PB pp. 407–408
- **13-10** Misleading Graphs and Statistics—TE pp. 362– 363B; SB pp. 362–363 / PB pp. 409–410
- **13-11 Technology: Box-and-Whisker Plots and Histograms**—TE pp. 364–365B; SB pp. 364–365 / PB pp. 411–412

Chapter 13 Data Analysis and Statistics

Foundations of Algebra, Grade 8		COMMON CORE PROGRESS MATHEMATICS, GRADE 8		COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8	
13-12	13-12Problem-Solving Strategy: Consider Extreme Cases—TE pp. 366–367B; SB pp. 366–367 / PB pp. 413–414Lesson 30Establish Facts about Parallel Lines and Angles—pp. 260–265Lesson 31Establish Facts about Triangles and Angles—pp. 266–275	Lesson 30		8.G.5	Use informal arguments to establish facts about the angle sum and exterior angle of
			triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangle		
					For example, arrange three copies of the same triangle so that the sum of the three angles appears to form a line, and give an argument in terms of transversals why this is so.
		Lesson 36	Learn and Apply Volume Formulas —pp. 308–315	8.G.9	Know the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

Chapter 14 Probability and Logic

Founda	TIONS OF ALGEBRA, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
14-1	Counting Principle and Tree Diagrams —TE pp. 372–373B; SB pp. 372–373 / PB pp. 423–424		
14-2	Theoretical Probability —TE pp. 374–375B; SB pp. 374–375 / PB pp. 425–426		
14-3	Experimental Probability —TE pp. 376–377B; SB pp. 376–377 / PB pp. 427–428		
14-4	Probability and Odds —TE pp. 378–379B; SB pp. 378–379 / PB pp. 429–430		
14-5	Mutually Exclusive Events —TE pp. 380–381B; SB pp. 380–381 / PB pp. 431–432		
14-6	Compound Events —TE pp. 382–383B; SB pp. 382–383 / PB pp. 433–434		
14-7	Pascal's Triangle and Probability —TE pp. 384– 385B; SB pp. 384–385 / PB pp. 435–436		
14-8	Permutations —TE pp. 386–387B; SB pp. 386– 387 / PB pp. 437–438		

Chapter 14 Probability and Logic

FOUNDAT	IONS OF ALGEBRA, GRADE 8	COMMON CORE PROGRESS MATHEMATICS, GRADE 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
14-9	Combinations —TE pp. 388–389B; SB pp. 388– 389 / PB pp. 439–440		
14-10	Connectives —TE pp. 390–391B; SB pp. 390–391 / PB pp. 441–442		
14-11	Converse, Inverse, and Contrapositive —TE pp. 392–393B; SB pp. 392–393 / PB pp. 443–444		
14-12	Inductive and Deductive Reasoning —TE pp. 394–395B; SB pp. 394–395 / PB pp. 445–446		
14-13	Conjectures and Counterexamples —TE pp. 396–397B; SB pp. 396–397 / PB pp. 447–448		
14-14	Problem Solving: Review of Strategies —TE pp. 398–399B; SB pp. 398–399 / PB pp. 449–450		

Skills Update

Foundations of Algebra, Grade 8		Common Core Progress Mathematics, Grade 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
SU	I. Place Value (with Powers of 10)—p. SB p. 403		
SU	II. Compare and Order Numbers (Decimals)— p. SB p. 403		
SU	III. Estimation: Rounding and Compatible Numbers—p. SB p. 404		
SU	IV. Properties of Addition and Multiplication: Commutative Property—p. SB p. 404		
SU	V. Properties of Addition and Multiplication: Associate Property—p. SB p. 404		
SU	IV. Properties of Addition and Multiplication: Identity Property—p. SB p. 404		
SU	IV. Properties of Addition and Multiplication: Zero Property of Multiplication—p. SB p. 405		

Skills Update

FOUNDATIONS OF ALGEBRA, GRADE 8		Common Core Progress Mathematics, Grade 8	COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8
SU	IV. Properties of Addition and Multiplication: Distributive Property of Multiplication Over Addition—p. SB p. 405		
SU	V. Order of Operations with Integers—p. SB p. 405		
SU	VI. Divisibility Rules—p. SB p. 406		
SU	VII. Prime and Composite Numbers—p. SB p. 406		
SU	VIII. Multiply Decimals—p. SB p. 407		
SU	IX. Divide Decimals—p. SB p. 407		
SU	X. Zeros in a Product or Quotient—p. SB p. 408		
SU	XI. Mixed Numbers and Fractions—p. SB p. 408		
SU	XII. Add and Subtract Fractions—p. SB p. 409		
SU	XIII. Multiply and Divide Fractions—p. SB p. 409–410		
SU	XIV. Metric System of Measurements—p. SB p. 410–411		
SU	XV. Customary System of Measurements —p. SB p. 411		
SU	XVI. Basic Geometric Terms—p. SB p. 411–412		
SU	XVII. Classify and Measure Angles—p. SB p. 412		
SU	XVIII. Classify Triangles and Quadrilaterals— p. SB p. 413		
SU	XIX. Perimeter and Area of Rectangles—p. SB p. 413–414		
SU	XX. The Coordinate Plane—p. SB p. 414		

Skills Update

FOUNDATIONS OF ALGEBRA, GRADE 8

COMMON CORE PROGRESS MATHEMATICS, GRADE 8

COMMON CORE STATE STANDARDS FOR MATHEMATICS, GRADE 8

SU XXI. Double Line and Double Bar Graphs—p. SB p. 415

SU XXII. Probability of an Event—p. SB p. 416